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ABSTRACT
The multi-armed bandit is an important framework for balancing

exploration with exploitation in recommendation. Exploitation rec-

ommends content (e.g., products, movies, music playlists) with the

highest predicted user engagement and has traditionally been the

focus of recommender systems. Exploration recommends content

with uncertain predicted user engagement for the purpose of gath-

ering more information. The importance of exploration has been

recognized in recent years, particularly in settings with new users,

new items, non-stationary preferences and attributes. In parallel,

explaining recommendations (“recsplanations”) is crucial if users

are to understand their recommendations. Existing work has looked

at bandits and explanations independently. We provide the first

method that combines both in a principled manner. In particular,

our method is able to jointly (1) learn which explanations each

user responds to; (2) learn the best content to recommend for each

user; and (3) balance exploration with exploitation to deal with un-

certainty. Experiments with historical log data and tests with live

production traffic in a large-scale music recommendation service

show a significant improvement in user engagement.

CCS CONCEPTS
• Information systems → Recommender systems; Collabo-
rative filtering; • Computing methodologies → Causal rea-
soning and diagnostics; Reinforcement learning;
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1 INTRODUCTION
Recommender systems are central to the effectiveness of many

online content and e-commerce platforms. Users are overwhelmed

by the choice of what to watch, buy, read, and listen to online
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and recommendations are a popular way to help them navigate

this choice. But recommendations without context lack motivation

for a user to pay attention to them. Adding an associated expla-

nation for a recommendation (abbreviated as recsplanation [16]),

is known to increase user satisfaction and the persuasiveness of

recommendations [6, 13, 24]

Explanations in recommender systems have the goals of both

providing information about recommended items and encouraging

better outcomes such as higher user engagement resulting from

more confidence and transparency in the recommendations [6]. In

this paper, we argue that users respond to explanations differently

and that, as a result, there is a need to jointly optimize both item

selection and explanation selection for such systems. For example,

more social users may respond better to explanations that reference

activity in their social network than more private users. In addition,

the same users may respond to explanations differently according

to their context and intent, e.g., people on the move may require

more dependable recommendations from their recent consumption

history due to lack of time. We formalize the problem of jointly

optimizing item and explanation recommendation and address the

technical challenges this problem presents.

In more detail, introducing explanations to recommendation

greatly expands the search space of actions the recommender can

select from and compounds the problem of data sparsity. Recom-

mendation methods that aim to maximize engagement without

regard for model certainty or exploration can unnecessarily ignore

highly relevant items. Figure 1a shows the various outcomes when

a recommender can only exploit or ignore an item. When there is

high certainty about the item relevance, resulting from an abun-

dance of data about the user-item match, the recommender behaves

optimally. However, in the face of uncertainty from only a small

amount of data, the recommender will sometimes suboptimally

ignore relevant items (the lower left quadrant in the grid). The fact

that the recommender itself is active in deciding its own training

data perpetuates this problem. The problem of ignoring items or

whole categories of items leads to filter bubble pathologies [3].

Bandit approaches introduce the notion of exploration to reduce

the uncertainty about the relevance of an item [22]. By reserving

judgement about item relevance until enough data has been col-

lected, the bandit is able to discover more relevant items (the lower

left quadrant of Figure 1b).

The aforementioned issues around item uncertainty also apply

to explanation uncertainty. How to incorporate exploration when

jointly optimizing for items and explanations is another gap in exist-

ing work. Naïvely treating each (item, explanation) pair as a distinct
action would multiplicatively scale the number of actions that need
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High relevance

High certainty

Low relevance

Low certainty

IgnoreExplore

ExploitExploregr
ou

nd
 t

ru
th

 it
em

 r
el

ev
an

ce

recommender system relevance certainty

(b) Bandit methods have three modes: exploit, ignore, or
explore an action.

Figure 1: Recommendation methods that aim to maximize engagement without regard for model certainty or exploration
sometimes unnecessarily ignore highly relevant items.

to be explored. In addition, in some cases the recommender is re-

quired to provide multiple items within the same explanation (e.g.,

in the shelf layout on a website).

Our approach, BAndits for Recsplanations as Treatments (Bart),
addresses these gaps in the following way. Bart learns and predicts

satisfaction (e.g., click-through rate, consumption probability) for

any combination of item, explanation, and context and, through

careful logging and contextual bandit retraining, can learn from its

mistakes in an online setting.

In summary, our contributions are the following:

• We identify and provide a formalization for the problem of

jointly personalizing explainable recommendations.

• We present Bart, a contextual bandits-based framework that

addresses the problem of recommending with explanations

under uncertainty of user satisfaction.

• Implementing Bart in a scalable production environment

presented challenges that we discuss and address.

• Through offline experiments on randomized historical data

and online experiments with users in the homepage of a

large-scale music recommender system, we empirically eval-

uate Bart and find that it significantly outperforms the best

static ordering of explanations.

This paper is organized as follows. We consider work related to

recommendations with explanations and bandits in Section 2. In

Section 3, we formalize the problem and explain how Bart addresses

it. We evaluate Bart in Section 4 using data offline and in a live

production test. Finally, conclusions and future work are discussed

in Section 5.

2 RELATEDWORK
Our work on personalizing explainable recommendations with

bandits builds upon a significant amount of related work both in ex-

plaining recommendations and bandits for recommender systems.

Explanations in Recommendations. Explanations help the user

better understand and interpret the rationale of the recommender

system, thereby making it more trustworthy and engaging. Kouki et
al. [13] propose a hybrid recommender system built on a probabilis-

tic programming language and show that explanations improve

the user experience of recommender systems. Friedrich et al. [6]
propose a taxonomy of explanation approaches, taking into account

the style (e.g., collaborative, knowledge, utility or social explanation

style) and paradigm (e.g. content-based, knowledge or collaborative

based) and type of preference model. Further, various visualization

techniques for explaining recommendations have been proposed,

including interfaces with concentric circles [11] and pathways be-

tween columns [2].

Bandits for Recommendations. Radlinski et al. propose a top-K
learning to rank approach using bandits [18]. Li et al. consider
personalized news recommendation as a contextual bandit prob-

lem and propose using LinUCB to evaluate bandit algorithms from

logged events [17]. Q-learning and MDPs have been used to recom-

mend items of interest to users, with previous work focusing on

recommending news [20], travel information [21], and web pages

[9]. Wang et al. formulate interactive, personalized recommenda-

tion as a bandit task [25]. More recently, the combinatorial problem

in bandits was addressed by Kveton et al. [14, 15] and Swaminathan

et al. [23] as slate recommendation.

3 METHOD
We next discuss the explainable recommendation problem in more

detail in Section 3.1 and present Bart in Section 3.2.

3.1 Problem Formulation
The problem we address in this paper is how to jointly personalize

recommendations of items with their associated explanation. Per-

sonalization is based on contextual features describing what the

system knows about the user, their context, and the item.

We formalize the problem in the following way. Let J be the

set of items,U be the set of users, and E the set of explanations.

Introduce the validity function f : E ×U → 2
J
that maps any pair
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Table 1: Examples of parameterized explanation rules

Parameterized Explanation Rule for Generating Items Example P ’s

Movies your friends love Movies that are popular with P ’s friends { user123, user921 }
More like P Playlists by artists similar to P { David Bowie, Jay-Z, Lady Gaga }

Jump back in Book genres that a user consumed heavily 6 months ago ∅

Examples of simple parameterized rules for specifying the validity function f . Some of these rules assume side information that is

commonly accessible, such as a way of finding similar artists through a graph or embedding representation.

Table 2: Summary of symbols

Symbol Meaning

j ∈ J Item to be recommended

e ∈ E Explanation for an item

u ∈ U User

x ∈ X Context, such as user and item attributes

f (e,u) Validity function for explanation e and user u
θ Coefficients in logistic regression

v Set of embeddings in factorization machine

X Context as a random variable

A Action (i.e. recommendation and explanation)

as a random variable

R Reward as a random variable (e.g. binary

consumption indicator)

xn Observed context for data point n
an Action performed for data point n
rn Observed reward for data point n
N Total number of data points

D Dimensionality of context

π Policy distribution over actions

πc Collection policy used to collect the training data,

also known as the propensity score

r (t ) Reward model with t th order interactions

of elements e ∈ E and u ∈ U to a subset of J . In other words, f
describes the set of valid items Ve,u ⊆ J for each explanation and

user.

Why not have all items associated with all explanations, Ve,u ≡
J ,∀e ∈ E,∀u ∈ U?While this is permissible in the specification of

f , it is not a likely outcome because only some items are compatible

with each explanation. For example, “because you recently read

historical fiction” is only a valid explanation for recommending

more historical fiction or related content. We limit our scope to

assuming that f has been pre-specified by a designer. Note that

this still admits a large number of possible explanations, through

simple rules that are parameterized. Table 1 gives several examples

of simple rules that can scalably cover the entire item set J and

explanation set E through parameterization. Finally, note that since

we have not restricted f to be injective, there may be more than

one explanation for the same item.

Building on these definitions, the problem we address is that of

building a machine learning approach that sorts both explanations

and items in a personal, dynamic, responsive, and relevant fashion.
Formally, we seek a reward function r : J × E ×X → R that accu-

rately predicts the user engagement for item j ∈ J , explanation

e ∈ E, given context x ∈ X. The goal of training is to optimize the

learning objective (which is related to the accuracy of the predicted

reward) with respect to the free parameters of r .
In addition, given a reward function, we seek a method for select-

ing an item-explanation pair (j, e ) to present to the user. We refer

to this presentation as the action, in line with bandit terminology.

Choosing the optimal action (j∗, e∗) = argj,e max r (j, e,x ) in any

particular context x is the exploitative action, but as explained in

Section 1, exploiting at every time step is not optimal due to the fact

that r is only an estimator of the true reward function. We therefore

seek a policy π (·|x ) that is a distribution over actions from which

the bandit samples each action in response to the context.

Note that this definition of action and policy makes two inde-

pendence assumptions. Specifically, it says that the choice of action

depends only on the context. Furthermore, it says that the reward

is independent of rewards and actions at other time steps given the

current action and current context (see Section 3.2). The former

assumption is weaker than one would initially suppose, due to the

fact that we are free to define the context any way we like. For

example, the context can include summary statistics about recent

actions or outcomes. The latter is the stronger assumption and

naïvely assumes that combinatorial actions such as slate recom-

mendation [23] result in rewards that are a sum of rewards for each

action (see Section 5 for a discussion about future work).

With this definition of the problem to be solved we next present

Bart, a contextual bandits approach to recommending with explana-

tions. A summary of symbols used in this paper is given in Table 2.

3.2 Bart
The purpose of Bart is to learn how items and explanations interact

within any given context to predict user satisfaction. It does this

in a reinforcement learning setting where it must decide which

actions to take next to gather feedback. Our overall strategy with

Bart is to build an effective model of satisfaction from sparse inputs

and to use the contextual bandit framework to manage exploration

and training.

The standard multi-armed bandit (MAB) maintains a model of

the reward R which is conditioned on the choice of action A [22].

The choice ofA depends only on the history of actions and rewards

up to the current time step Dn = {(a1, r1), . . . , (an , rn )}.
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The goal of MAB is to choose actions that maximize the total

sum of rewards

∑N
n=1 rn . This problem is reduced to that of:

(1) maintaining an accurate belief about the reward of each

action; and,

(2) creating a distribution over actions (i.e., a policy) that effec-

tively balances exploitation (choosing high reward actions)

and exploration (finding high reward actions).

There exist several frameworks for doing (2) to varying degrees of

sophistication
1
such as epsilon-greedy, upper confidence bound,

and Thompson sampling.

The assumptions of the reward model in a standard MAB are

summarized in Figure 2a and lead to simple procedures for maintain-

ing a reward belief for each action, e.g., by calculating the posterior

distribution p (R |Dn ) given a history of action-reward data Dn or

maintaining a mean and variance estimate for each action.

A criticism of the standard MAB is that it ignores contextual

information, denoted by X , that could affect the reward. For ex-

ample, in recommendation the context may include user features,

item features, time of day, platform etc.. This motivates collect-

ing and observing X before each action and making the choice of

which action to take dependent onX . This is known as a contextual

bandit [1], illustrated in Figure 2b.

There are four important elements to the contextual bandit:

the context, reward model, training procedure, and exploration-

exploitation policy. We describe each below.

3.2.1 Context & Reward Model. The reward model represents

the predicted user engagement resulting from an explained recom-

mendation within a given context. As highlighted in Section 3.1, the

cardinality of this input space is J × E × X which is far larger than

can be explored exhaustively. We therefore must resort to making

assumptions about the structure of the reward function r .
One of the simplest assumptions imposes linearity on the reward

model,

r (j, e,x ) = σ (θ
global

+ θ⊤j 1j + θ
⊤
e 1e + θ

⊤
x x ), (1)

where 1i represents a one-hot vector of zeros with a single 1 at index

i . Eq. 1 combined with a cross-entropy loss function is a logistic

regression model of a binary reward, such as whether or not an

item was consumed. Binary or consumption count outcomes are

common in implicit recommendation [8, 12]. We focus on binary

outcomes in this paper for simplicity but note that it can often be

replaced with more informative measures of user satisfaction by

adapting the last step in the objective function accordingly (e.g.,

replacing sigmoid σ and cross-entropy loss with identity and a

root mean squared error loss function for continuous satisfaction

measures).

For convenience, we stack all the inputs and denote them by a

single augmented input vector x ′ = [1
⊤
j , 1
⊤
e ,x
⊤
]
⊤
in the same way

that we stack all the corresponding parameters θ = [θ⊤j ,θ
⊤
e ,θ
⊤
x ]
⊤
.

The logistic regression model is then defined as

r (1) (j, e,x ) = σ (θ
global

+ θ⊤x ′), (2)

where the aggregated context is now x ′ and contains information

about the item, explanation, and context.

1
N.B. an alternative formulation of MAB skips problem (1) and attempts to learn an

optimal policy directly.

context X

action A

reward R

(a) Bandit

context X

action A

reward R

(b) Contextual bandit

Figure 2: Graphical model notation of the multi-armed ban-
dit and the contextual multi-armed bandit. Nodes indicate
random variables, arrows direct conditional dependency,
and shaded nodes are observed random variables.

Logistic regression has the advantages of interpretability, identi-

fiability, and efficiency. Its major disadvantage in a recommendation

setting is the fact that the choice of item and explanation (j, e ) that
maximizes r (j, e,x ) is the same regardless of user or user attributes

due to the fact that their contribution to the overall predicted en-

gagement is restricted to be linear. It is therefore a type of controlled
popularity approach that provides a single set of recommendations

for all users in all user contexts where the item and explanation

popularity (θ j ,θe ) are estimated by controlling for other effects.

To get more personalized recommendations, we can introduce

weighted sums of higher order interactions between elements in the

aggregated context vector x ′. When the weights are inner products

of latent embeddings, the resulting model family is known as the

factorization machine [19],

r (2) (j, e,x ) = σ (θ
global

+ θ⊤x ′ +
D∑
a=1

D∑
b>a

va
⊤vbx

′
ax
′
b ) (3)

r (3) (j, e,x ) = σ (θ
global

+ θ⊤x ′ +
D∑
a=1

D∑
b>a

va
⊤vbx

′
ax
′
b

+

D∑
a=1

D∑
b>a

D∑
c>b

< va ,vb ,vc > x ′ax
′
bx
′
c ), (4)

whereD is the dimensionality of x , we introduce latent embeddings

v , and < x ,y, z > represents the sum of element-wise products of

vectors x ,y, z. In general, we refer to r (t ) as a t th-order factorization
machine.

3.2.2 Off-Policy Training. We use counterfactual risk minimiza-

tion (CRM) to train the contextual bandit [10]. CRMuses importance

sample reweighting to account for the fact that the data come from

the production policy πc and not a uniform random experiment.

After the reweighting, the optimal parameters ( ˆθ , v̂ ) can be found

by maximizing likelihood,

ˆθ , v̂ = argθ,v maxEA∼Uniform( ·)[EX ,R [logpθ,v (R |A,X )]] (5)

≈ argθ,v max

1

N

N∑
n=1

Uniform(an )

πc (an )
logpθ,v (rn |an ,xn ). (6)

In more detail, counterfactual risk minimization is required be-

cause if the collection policy πc is not uniform then the resulting
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A

πcπ

R

Figure 3: Off-policy training fits a reward function that best
fits the input points with respect to the target policy π using
input points generated by the collection policy πc .

objective when training a model does not match the target objective

Eq. 5 in expectation. Furthermore, no amount of data will correct

for this mismatch. Eq. 6 addresses the problem by modifying the

weight of each data point’s contribution to the objective function to

make it look like an expectation with respect to the uniform policy.

Figure 3 illustrates the problem that CRM addresses.
2
Suppose

the goal is to minimize the sum of squared errors with respect to

π using data generated from πc . Simply minimizing the sum of

squared errors of the observed data points would result in the blue

line. But this is not the answer we are seeking because there are

more data points where πc is higher. This gives that region of action
space more importance than other regions during the line fitting.

Eq. 6 tells us to downweight points where πc is high and π is low

(and vice versa) before minimizing the sum of squared errors. This

results in the steeper red line.

As an example in a recommender systems context, if the deployed

recommender is suggesting item j1 with explanation e1 to a large

number of users, and the same item with a different explanation

(j1, e2) to a small number of users, then the logged data will reflect

these proportions. Training a new model from the logged data will

unduly focus on minimizing the error for explanation e1 at the

expense of e2 even if the latter has substantially more engagement.

In a linear discrete model, such as r (1) in Eq. 1 when the context

consists of one-hot encodings, there is no trade-off. But any non-

linear model, such as a factorization machine or neural network,

will sacrifice unbiasedness for generalization.

It follows that we must know the collection policy πc for each
recommendation, referred to as the propensity score in causal anal-

ysis, in order to do counterfactual training. We consider how to do

this next.

3.2.3 Exploration-Exploitation Policy & Propensity Scoring. We

finally define the exploration-exploitation approach and collection

policy for propensity scoring in Bart.

When presented with context x and user u, the optimal action

under the reward function is (j∗, e∗) = argj,e max r (j, e,x ). There
are several exploration approaches to select from, most based on

variants of Thompson sampling, upper confidence bounds, and

2
The example in Figure 3 is done in continuous space because it is easier to visualize.

The same principles carry over to discrete actions.

epsilon-greedy [22]. We focus on epsilon-greedy for simplicity of

implementation in production and of propensity scoring.

A standard epsilon-greedy treatment of the reward function

gives equal probability mass to all non-optimal items in the validity

set f (e,x ) and (1−ϵ ) additional mass to the optimal action (j∗, e∗).3

The limitation of this approach is that the policy must either exploit

(j∗, e∗) or explore the item and explanation simultaneously. But

if the contribution an explanation alone makes to engagement is

non-zero (i.e., if θe , 0 in Eq. 1- 4) then this is overly exploratory as

there may exist a set of effective explanations that Bart should focus

on regardless of the items.
4
Furthermore, exploring over a large

number of actions results in small propensity scores. This has the

effect of giving the counterfactual objective in Eq.6 high variance,

making training unreliable. Finally, in practice, we are sometimes

constrained to presenting multiple items within an explanation at

once. This most commonly occurs in the shelf interface on websites.

In light of these considerations, Bart uses conditional explo-

ration. Specifically, it decides whether to explore or exploit the

items separately from the explanations, all the while keeping the

same underlying reward model r that captures the interactions

between items, explanations, and the context,

π item

c (j | x , e ) =




(1 − ϵ ) + ϵ
|f (e,u ) |

, if j = j∗, j ∈ f (e,x )

ϵ
|f (e,u ) |

, if j , j∗, j ∈ f (e,x )

0, otherwise.

where j∗ = argj1 max r (j1, e,x ) (7)

π
expl.
c (e | x , j ) =




(1 − ϵ ) + ϵ
|E |
, if e = e∗, j ∈ f (e,x )

ϵ
|E |
, if e , e∗, j ∈ f (e,x )

0, otherwise.

where e∗ = arge1 max r (j, e1,x ). (8)

Items are sampled first from π item

c for all e1 ∈ E. Then, conditional

on the items chosen, the explanation is sampled from π
expl.
c . The

overall propensity score is therefore πc = π item

c π
expl.
c . To further

address small propensities giving the objective high variance, a

combination of normalized importance sample reweighting and

propensity score capping is used [7].
5

3.2.4 Training and Action Selection in Practice. Incorporating all
the elements introduced in Sections 3.2.1-3.2.3, we briefly discuss

how Bart trains and selects actions in practice. Ideally, the param-

eters are recalculated from all the data seen up to the N th
(latest)

observation using Eq. 6. This takes constant time in fully conjugate

models such as a Gaussian or Bernoulli model of rewards. However,

models that generalize better across contexts (e.g., logistic regres-

sion, factorization machine) require at least O (N ) training time

and N grows by 1 each time a new observation is made. For this

reason, Bart perioridcally retrains in batch mode (Eq. 6), e.g., once

per day or once per training dataset. Performance improves the

shorter this period because the model has seen more data during

3
If there happens to be two or more equal optimal actions the additional probability

mass may be split equally between them.

4
Decreasing the ϵ parameter does not solve the issue because it only changes the

proportion of exploration actions, not what the exploration actions look like.

5
To further reduce variance could have used a doubly robust approach [5] but found

that the variance was sufficiently low due to the restricted action space size.
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Table 3: Subset of Shelves Considered in Hypothesis Tests

Explanation # Impressions

Because it’s [day of week] 140.3K

Inspired by [user]’s recent listening 138.4K

Because it’s a new release 140.5K

Because [user] likes [genre] 130.7K

Because it’s popular 140.5K

Mood 140.7K

Focus 140.5K

training. However, the effect of additional data for large training

sets is not significant. Our estimated performance can be seen as a

lower bound on actual performance. Using the latest reward model,

the action for each impression is selected using Eqs. 7 and Eq. 8.

4 EMPIRICAL EVALUATION
We use logged feedback data and live production traffic from an

online music streaming service to evaluate different versions of Bart

against benchmarks. In our experiments, we find that personalizing

explanations and recommendations provides a significant increase

in estimated user engagement, as estimated by offline and online

metrics. We start in Section 4.1 with offline evaluations where we

test two hypotheses and find that explanations have a significant

impact on user engagement.We perform a set of offline experiments

that show that considering pairwise and three-way interactions

within the context vector is a much more accurate approach for

Bart. In Section 4.2 we describe our experiments in an online A/B

test, including the challenges involved in building a production

scale test. We find that Bart provides more than a 20% improvement

in stream rates compared with statically ordering explanations.

4.1 Offline Evaluation
Offline evaluation uses logged user interaction data with random-

ized recommendations to check hypotheses about explainable rec-

ommendations and to compare different recommendation algo-

rithms. A summary of the offline data collected from a streaming

mobile music recommendation service is shown in Table 4.

The recommendations were safely randomized, meaning that

we pre-select approximately 100 relevant playlists for each user

(as defined by the validity function f from Section 3.1) then ran-

domly shuffled the explanation and the set of recommendations

within each explanation. Relevance was determined by a sepa-

rate embedding-based model of preference that is not related to

the reward model in Bart, similar to the candidate selection stage

in Covington et al. [4]. While safe exploration introduces some

confounding into the data, it limits the negative impact on user

satisfaction that a fully randomized trial would create (e.g., by rec-

ommending a genre to a user who strongly dislikes that genre).

As we will describe in this section, we addressed this additional

confounding in the hypothesis testing by subselecting playlists and

explanations.

4.1.1 Testing the Explanation Hypothesis. We first test the null

hypothesis that explanations have no effect on user satisfaction.

Rejecting the null hypothesis means that users respond differently

depending on which explanation is used, and if this is the case, it

motivates the learning of personalized explanations for users.

Null Hypothesis 1. The outcome of whether an explanation
results in user stream is independent of the choice of explanation.

We use a χ2 test to determine whether the null can be rejected

by the offline data at 1% significance. We focus on the top 7 explana-

tions to ensure that there were no population differences between

the groups that see each explanation. In doing so, we account for

the candidate selection step outlined in Section 4.1. The 7 explana-

tions examined here are listed in Table 3. There are 6 degrees of

freedom to the test, giving a threshold of χ2
1%,6 = 22.458. The data

gives χ2 = 570.67. Therefore, we reject the null hypothesis and find

that stream behavior is dependent on the choice of explanation for

the 7 popular explanations in our data set.

Could the difference in stream probability be due to the fact that

different explanations have different valid items? In other words, the

fact that explanation A has higher engagement than explanation B

could be because users respond better to A or because A has a

more engaging set of items to recommend (or both). We investigate

whether there is an intrinsic appeal to some shelves for some users

with the next null hypothesis.

Null Hypothesis 2. The outcome of whether a user streams from
a recommendation is independent of the choice of explanation provided
for that recommendation.

To check Null Hypothesis 2, we focus on the subset of playlists

that appear in more than one explanation. There were two sets of

explanations that exhibited significant playlist overlap. The first set

consisted of set1 = { day-of-the-week, inspired-by-recent-listening,
because-user-likes-genre, popular } resulting in a χ2

3,1% threshold of

16.266 at 3 degrees of freedom. The second set consisted of set2 =
{ mood, focus } resulting in a χ2

1,1% threshold of 10.828. We set the

significance threshold for both tests at 1%.

The data indicate χ2 = 126.85 for set1 and χ2 = 0.11236 for

set2, meaning that we can reject the null hypothesis for set1 but
not set2. Therefore, we know that explaining the same playlist as

recommended because it is popular vs. because the user likes a

certain genre vs. because it’s linked to the day of week vs. because

it is similar to what the user has been listening to recently makes a

difference to engagement. Specifically, popularity was the weakest

driver of engagement while related to recent listening and genre-

based explanations were the strongest.
6

Our failure to reject the hypothesis for set2 means that we must

accept Null Hypothesis 2 for the mood and focus explanations. This
is unsurprising because these are vaguer explanations and weaker

calls to action than the other explanations we considered. Also, in

practical terms, we only found 6 playlists in common between the

two explanations, giving us less data with which to draw conclu-

sions about those explanations.

6
An alternative reason why recent listening might have stronger engagement, even

with the same playlists, is because the recommendations are presented at the right time.
While this likely contributes to the effect, the evidence for rejecting Null Hypothesis 2

is strong enough that this additional effect does not change our conclusion.
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Figure 4: Experimental results on offline music recommen-
dation data show that a model that captures three-way in-
teractions between contextual features outperforms other
methods. Logistic and Random have no embeddings and are
therefore constant in that dimension.

Having established a basis on which explained recommendations

changes the response to recommendations, we next test various

versions of Bart and compare to the unpersonalized policy.

4.1.2 Comparative Offline Experiments. We compare the impact

that various recommendation methods have on user satisfaction

estimated from logged randomized interaction data. We split the

logged data into three sets: the training set comprising the first

week of the data, the validation set comprising one day, and the test

set comprising the next week. A summary of test data is given in

Table 4. We used the whole training week but randomly subsampled

1% of the test week so the training data sizes are approximately

100x those of the test set. This gave us a large enough test set for

gaining statistical significance in our results. The recommendation

methods, metrics, and results are discussed next.

Table 4: Summary of Test Data

Experiment Group # Impressions # Users # Items

Hypothesis testing 970K 140K 140K

Offline experiments 190K 8.6K 9.6K

Online experiments 3.8M 560K 230K

Contextual Features. The contextual features of the reward model

used in the offline and online experiments consist of item attributes

and user attributes. The item attributes are the playlist identifier, the

explanation identifier, and type of playlist (e.g., album, compilation).

The user features are the user region, the product and platform

of the user’s device, a vector representing the normalized genres

from the user’s listening history, and a vector representing the

normalized types of playlist from the user’s listening history.

Recommendation Methods. We compare different versions of Bart

against baselines. The methods we consider in the offline experi-

ments are,

• Bart 2nd Order uses Bart with a 2nd order factorization

machine reward function r (2) given in Eq. 3.

• Bart 3rd Order uses Bart with a 3rd order factorization

machine reward function r (3) given in Eq. 4.

• Logistic Regression provides a static ordering of the items

and explanations according to their individual controlled

popularity defined in Eq. 2.

• Random randomly selects items and explanations while re-

specting the validity function. The quality of random shuffle

is lower bounded due to safe exploration (see Section 4.1).

Metrics. The two metrics we use for comparisons are designed to

approximate user satisfaction in a deployed recommender system.

Metrics are averaged over users in the test and are all reported

relative to Random for data privacy issues. The metrics for all

bandit-based approaches include the cost of exploration.

• Expected Stream Rate The expected stream rate is the of-

fline estimate of the average number of times a user streamed

at least one song from a recommended playlist per recom-

mendation. Evaluation on recommendation data can some-

times give misleading results due to confounding, as de-

scribed in Section 3.2.2. To address this, we use inverse

propensity score (IPS) reweighting to estimate the expecta-

tion [1]. Issues of high variance are known to be associated

with IPS [7]. We did not encounter this problem here due to

moderate action space size and no extreme propensities.

• NDCG Normalized discounted cumulative gain measures

the weighted frequency of streams that a recommendation

algorithm ranks near the top of a list. Formally, it is defined

as NDCG@K =
DCG@K

IDCG@K
, where DCG@K =

∑K
k=1

2
relk −1

log
2
(k+1)

and relk = 0 or 1 is the measured relevance of the item that

a recommender placed at position k , in this case whether a

user streamed at least one track from a playlist. IDCG@K is

the idealized DCG, where all items are relevant, normalizing

the NDCG score. We set K = 10 to the number of items that

would typically be considered in a recommendation.
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Figure 5: Relationship between item coefficient in logistic
regression and item popularity shows that they are closely
related but not identical.

Results. Figure 4a and Figure 4b show the expected stream rate

and NDCG for the recommendation methods under a range of

embedding sizes and order of interactions. We find that Bart with

a reward model that considers third order interactions between

elements of the context vector performs the best across a variety

of embedding sizes and is typically 5 times better than random as

measured by stream rate. The reward model that considers second

order interactions performs almost as well, but is more sensitive to

the size of the embedding and appears to peak at embedding size

30. We see no benefit to increasing the embedding size beyond 30

for any approach because larger embeddings overfit the data.

As described in Section 3.2.1, logistic regression in recommenda-

tion provides a static ordering of items and explanations according

to controlled popularity. Plotting the learned controlled popularity

of items against the true stream rate in Figure 5 tells us the strength

of relationship before and after controlling for non-item factors

relating to the user and item context. It is interesting to see a large

range of variation in average stream rate for any particular coef-

ficient. For example, the set of items with a controlled popularity

coefficient = 1 have actual stream rates in the range [e−2, 1]. This
tells us that Logistic Regression is controlling for strong external

factors would otherwise confound the popularity estimate in a

static ordering of items and explanations.

4.2 Online A/B Tests
We now evaluate Bart in an online A/B test with live production

traffic from an online music recommender service. For this test

we introduce the Control benchmark that ranks the explanations

statically according to their engagement but uses a default order-

ing of items. In this section we start by discussing the production

challenges related to this test, describe the control experiment and

contextual features considered, then discuss the results.

Production Challenges. There are several challenges we faced

moving Bart into a production setting for online A/B testing. Firstly,

too much exploration has the potential to confuse users. To address

this, we limited the exploration rate in our experiments to 10%,

giving significant probability mass to all actions in the space while

reducing the negative effects of exploration. We also set the causal

Bart 2nd order Bart 3rd order Control Logistic Regression Random
Recommendation Method
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Figure 6: Online results from a music recommender system.
Error bars indicate the 95% confidence interval.

unit to one day per recommendation. Secondly, prediction has strict

latency requirements. This constrained the set of features we can

use. Thirdly, the features had to be available in both batch (offline)

and real time settings. Some features are hard to make available

in real time, such as the set of all artists a user has ever listened

to. Other features are hard to make available in batch, such as the

last 15 songs listened to. Fourthly, it is imperative that the feature

extraction and processing is identical during both training and

production. It is easy for inconsistencies to be introduced if these

occur in different languages or systems.

Results. The results in Figure 6 mostly agree with the offline

experiments from Figure 4. Considering two way and three way in-

teractions with Bart provides a considerable boost over the Logistic

Regression, Control, and Random methods. Since the confidence

intervals for Bart 2nd Order and Bart 3rd Order overlap, we cannot

say that one has a higher stream rate than the other here.

The two sets of experiments with results in Figure 6 and Figure 4

appear to disagree in both the ordering of method performance and

magnitude of improvement over Random. Themagnitude difference

could be due to the fact that the online test breaks the independence

assumption of rewards. Specifically, if an action results in a playlist

being streamed then this may affect other streaming behavior im-

mediately and possibly in the longer term.

5 CONCLUSIONS & FUTUREWORK
In this paper we introduced Bart, an algorithm for jointly personal-

izing recommendations and associated explanations for providing

more transparent and understandable suggestions to users. Bart

is an efficient method for addressing the exploration-exploitation

problem in recommendation. Experiments show that explanations

affect the way that users respond to recommendations and that Bart

significantly outperforms the best static ordering of explanations.

There several open issues to be addressed in future work. Further

automating the generation and parameterization of explanations

would enable more nuanced personalization. Also, future work can

incorporate slate assumptions to better recommend sets of items.

Finally, we would like to consider other exploration methodologies

for more efficient exploration.
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